Index: DamEngine/trunk/doc/Dam Engine - Functional Design/DesignGeometryAdaption.tex =================================================================== diff -u -r877 -r1085 --- DamEngine/trunk/doc/Dam Engine - Functional Design/DesignGeometryAdaption.tex (.../DesignGeometryAdaption.tex) (revision 877) +++ DamEngine/trunk/doc/Dam Engine - Functional Design/DesignGeometryAdaption.tex (.../DesignGeometryAdaption.tex) (revision 1085) @@ -1,5 +1,5 @@ \chapter{Geometry Adaption} \label{sec:DesignGeometryAdaption} -For the purposes of policy studies or determining impact scope or emergency measures, it can be useful to generate a profile that corresponds to the stated safety factor. \ProgramName can make automatic geometry adaptations for this purpose using a number of basic assumptions.\newline +For the purposes of policy studies or determining impact scope or emergency measures, it can be useful to generate a profile that corresponds to the stated safety factor. The stated safety factor can be given for stability inward and for piping.\ProgramName can make automatic geometry adaptations for this purpose using a number of basic assumptions.\newline Automatic profile adaptation in \ProgramName consists of the following steps: \begin{enumerate} @@ -9,7 +9,7 @@ \end{enumerate} \section{Raising the crest} \label{sec:RaiseCrest} -During this step, \ProgramName checks whether the crest height complies with the required (in other words the stated) dike table height (DTH, attribute: DikeTableHeight).\\ +During this step, \ProgramName checks whether the crest height complies with the required (in other words the stated) dike table height (DTH, \textcolor[rgb]{0.65,0.16,0}{\textsl{DikeTableHeight}}).\\ If the crest height (the Z value for characteristic point Outer crest) is equal to or higher than the stated DTH, the profile will not be adapted. If the profile is lower than the stated DTH, \ProgramName adjusts the geometry and creates a new surface line based on the original slope gradients ($\alpha$ and $\beta$) and the original crest width (B), see \autoref{fig:DTHAdaptedGeometry}.\\ The slope gradients, and the crest width, are determined on the basis of the following characteristic points: \begin{itemize} @@ -90,4 +90,6 @@ \includegraphics[width=1\textwidth]{pictures/ShoulderDevelop.png} \caption{Iterative shoulder development for macrostability} \label{fig:ShoulderDevelop} -\end{figure} \ No newline at end of file +\end{figure} + + Index: DamEngine/trunk/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex =================================================================== diff -u -r1005 -r1085 --- DamEngine/trunk/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex (.../FODAMPipingKernel.tex) (revision 1005) +++ DamEngine/trunk/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex (.../FODAMPipingKernel.tex) (revision 1085) @@ -1,2 +1,67 @@ -\chapter{Fucntional Design DAM piping kernel} +\chapter{Functional Design DAM piping kernel} \label{sec:FODAMPipingKernel} + +Voor piping kan gekozen worden uit 3 opties: + +\begin{enumerate} + \item Sellmeijer 4 krachten model + \item Sellmeijer (VNK) + \item Bligh +\end{enumerate} + +\section{Sellmeijer 4 krachten model} +\label{sec:Sellmeijer4KrachtenModel} + +Hier wordt gebruik gemaakt van de regel van Sellmeijer zoals omschreven in de TR Zandmeevoerende wellen uit 1996: + +\begin{figure}[H] + \centering + \includegraphics[width=0.5\textwidth]{pictures/piping1.png} + \label{fig:piping1} +\end{figure} + +waarbij: + +\begin{figure}[H] + \centering + \includegraphics[width=0.2\textwidth]{pictures/piping2.png} + \label{fig:piping2} +\end{figure} +\begin{figure}[H] + \centering + \includegraphics[width=0.2\textwidth]{pictures/piping3.png} + \label{fig:piping3} +\end{figure} +\begin{figure}[H] + \centering + \includegraphics[width=0.2\textwidth]{pictures/piping4.png} + \label{fig:piping4} +\end{figure} +\begin{figure}[H] + \centering + \includegraphics[width=0.7\textwidth]{pictures/piping5.png} + \label{fig:piping5} +\end{figure} + + + +\section{Sellmeijer (VNK)} +\label{sec:SellmeijerVNK} + De pipingberekeningen met het VNK model, een neuraal netwerk gebaseerd op het twee lagen model van Sellmeijer. Het model bestaat uit een grote collectie voorgemaakte sommen. De invoerparameters worden vergeleken met de invoer voor de voorgemaakte sommen en de uitkomst volgt door een interpolatie. In de eenvoudige toetsing wordt geen onderscheid gemaakt tussen een boven- en onderliggende zandlaag. Voor de berekeningen wordt de eerste watervoerende zandlaag uit het ondergrondmodel daarom gesplitst in twee lagen van gelijke dikte met dezelfde grondeigenschappen. De eigenschappen van Soil 3 zijn eveneens gelijk aan die van Soil1 en Soil 2. Het aanwezige verval is gedefinieerd door de buitenwaterstand verminderd met de waterstand bij het uittredepunt (polderpeil of maaiveldhoogte bij uittredepunt). De reductie van het verval met de term 0,3D, waarbij D de dikte van het slappe lagen pakket is, wordt verrekend op het kritieke verval, dus bij de sterkte kant. + +\begin{figure}[H] + \centering + \includegraphics[width=0.9\textwidth]{pictures/piping6.png} + \caption{Schematisering ondergrond voor neuraal netwerk van Sellmeijer} + \label{fig:piping6} +\end{figure} + +\section{Rekenregel van Bligh} +\label{sec:RekenregelVanBligh} +Hier wordt gebruik gemaakt van de standaard piping regel van Bligh met een creep factor van 18: + +\begin{figure}[H] + \centering + \includegraphics[width=0.2\textwidth]{pictures/piping7.png} + \label{fig:piping7} +\end{figure} \ No newline at end of file Index: DamEngine/trunk/doc/Dam Engine - Functional Design/FO.tex =================================================================== diff -u -r1031 -r1085 --- DamEngine/trunk/doc/Dam Engine - Functional Design/FO.tex (.../FO.tex) (revision 1031) +++ DamEngine/trunk/doc/Dam Engine - Functional Design/FO.tex (.../FO.tex) (revision 1085) @@ -34,9 +34,11 @@ \ProgramName- Functional Design (this document) \newline \citep{DAMEngine_FunctionalDesign} & Description of the requirements and functional design. \\ \hline \ProgramName - Technical Design\newline \citep{DAMEngine_TechnicalDesign}& Description of the implementation of the technical design of \ProgramName. \\ \hline \ProgramName - Technical documentation \newline \citep{DAMEngine_TechnicalDocumentation} & Description of the arguments and usage of different software components, generated from in-line comment with Doxygen. \\ \hline -\ProgramName - Test Plan \newline \citep{DAMEngine_TestPlan} & Description of the different regression and acceptation tests, including target values. \\ \hline -\ProgramName - Test Report \newline \citep{DAMEngine_TestReport} & Description of the test results (benchmarks and test scripts). \\ \hline +\ProgramName - Test Plan \newline \citep{DAMEngine_TestPlan} & Description of the different regression and acceptation tests, including target values. (not available yet). \\ \hline +\ProgramName - Test Report \newline \citep{DAMEngine_TestReport} & Description of the test results (benchmarks and test scripts)(not available yet). \\ \hline Architecture Guidelines \newline \citep{ArchitectureGuidelines} & Architecture guidelines that are used by DSC-Deltares. \\ \hline +Overview of data used \newline \citep{DAMDataUIEngine} & Table with data used by DAM UI and\ProgramName\\ \hline + \end{tabular} \caption{\small \ProgramName system documents.} \label{table-SystemDocuments} @@ -64,7 +66,7 @@ \subsection{REQ Data.Content}\label{sec:REQDataContent} The \ProgramName has a defined content for the data input, so DAM Clients know how to arrange the input data. The required data is described in xsd-files in https://repos.deltares.nl/repos/dam/DamEngine/trunk/xsd. -An overview of the required data for the engine in relation to DAM UI data is described in https://repos.deltares.nl/repos/dam/DamOverall/trunk/doc/DAM General/OverviewDataUIAndEngine.xlsx +An overview of the required data for the engine in relation to DAM UI data is described in https://repos.deltares.nl/repos/dam/DamOverall/trunk/doc/DAM General/OverviewDataUIAndEngine.xlsx. In this Functional design is referred to parameters mentioned in this overview by giving the \textcolor[rgb]{0.65,0.16,0}{\textsl{name}}. \section{Calculation} @@ -106,7 +108,7 @@ \subsection{REQ Calc.Piping}\label{sec:REQ CalcPiping} The DAM engine can make piping calculations with the DAM-piping kernel. -The functional desing of the DAM piping kernel is described in \autoref{sec:REQCalcPiping}. +The functional design of the DAM piping kernel is described in \autoref{sec:FODAMPipingKernel}. \subsection{REQ Calc.Assess.General}\label{sec:REQCalcAssessGeneral} The DAM engine provides a factor of safety. This may be one calculation or several calculations in batch. More than one calculation becomes available when using several locations and/or several subsoilcenarios. Index: DamEngine/trunk/doc/Dam Engine - Functional Design/DAM Engine - Functional Design.tex =================================================================== diff -u -r1005 -r1085 --- DamEngine/trunk/doc/Dam Engine - Functional Design/DAM Engine - Functional Design.tex (.../DAM Engine - Functional Design.tex) (revision 1005) +++ DamEngine/trunk/doc/Dam Engine - Functional Design/DAM Engine - Functional Design.tex (.../DAM Engine - Functional Design.tex) (revision 1085) @@ -49,6 +49,7 @@ %------------------------------------------------------------------------------ \appendix\chapter*{Appendix} \addcontentsline{toc}{chapter}{Appendix} \include{UseStabKernel} +\include{FODAMPipingKernel} \include{RRDScenarioSelection} \include{DesignGeometryAdaption} \include{REQDataGenerationWater} Index: DamEngine/trunk/doc/Dam Engine - Functional Design/UseStabKernel.tex =================================================================== diff -u -r1031 -r1085 --- DamEngine/trunk/doc/Dam Engine - Functional Design/UseStabKernel.tex (.../UseStabKernel.tex) (revision 1031) +++ DamEngine/trunk/doc/Dam Engine - Functional Design/UseStabKernel.tex (.../UseStabKernel.tex) (revision 1085) @@ -21,7 +21,8 @@ \subsection{Tangent lines generation} \label{sec:TangentLinesGeneration} For Bishop calcuations the tangent lines are always situated at the layer boundaries (automatic). For LiftVan the tangent lines can either be situated automatic or specified. This is user-defined. -When specified, the user (client of DAM-Engine) must provide the distance between the tangent lines. +When specified, the user (client of DAM-Engine) must provide the distance between the tangent lines, \textcolor[rgb]{1,0,0}{\textsl{Distance tangent lines (UV) }}. +The lower tangentline is always situated 5.0 m below the upper geometry point of the lowest aquifer. The tangentlines are drawn with the given distance until the upper tangent line is situated above the Z;DikeToeAtPolder. \section{Shear strength model}\label{sec:ShearStrengthModel} The DAM engine must be able to make stability calculations with following shear strength models: @@ -33,32 +34,32 @@ \item Cu gradient \item Pseudo values \end{itemize} + This shear strength models are defined in the soil parameters per layer. \section{Zone Plot} \label{sec:Zoneplot} The option of zone plot in D-Geo Stability is defined as the distinction of the slip circles in different zones; 1a, 1b, 2a, 2b, 3a and 3b.\newline DAM only uses zone 1 and zone 2. +Zone Plot is used when\textsl{\textcolor[rgb]{0.65,0.16,0}{ZoneType}} = ZoneAreas The following settings for the Zone plot of D-Geo Stability are used by DAM:\newline \begin{itemize} - \item Dike table heigth: user defined + \item Dike table heigth: user defined : \textcolor[rgb]{0.65,0.16,0}{\textsl{DikeTableHeight}} \item Dike table width: 3 m \item Start x co-ordinate restprofile: Xlocal;DikeTopAtRiver \item Boundary of design level influence at x: Xlocal;DSurfaceLevelInside \item Boundary of design level influence at y: maximal Y co-ordinate of surface line - \item Required safety in zones: safety factor stability inner slope + \item Required safety in zones: \textsl{\textcolor[rgb]{0.65,0.16,0}{RequiredSafetyFactorStabilityInnerSlope}} \end{itemize} Calculation with zone areas is only possible for inward stability calculations. - \section{Calculation options}\label{sec:CalculationOptions} D-Geostability offers different following calculation options. DAM uses the following settings: - \begin{itemize} \item Requested number of slices: default D-Geo Stability - \item Minimum circle depth: user defined + \item Minimum circle depth: user defined: \textsl{\textcolor[rgb]{0.65,0.16,0}{MinimalCircleDepth}} \item Minimum slip plan length: default D-Geo Stability \item Start value safety factor: default D-Geo Stability \item Minimum x-entrance used: default D-Geo Stability @@ -70,7 +71,8 @@ \subsubsection{Forbidden zone } \label{sec:Forbidden zone} Forbidden zone is an option to define a forbidden zone for the entrance point of the slip plane. -The forbidden zone is situated to the rigth side of a certain x co-ordinate. This x co-ordinate is defined by the ForbiddenZoneFactor. Xlocal;forbidden zone WF =(Xlocal;DikeTopAtPolder) + ForbiddenZoneFactor*(Xlocal;DikeToeAtPolder - Xlocal;DikeTopAtPolder) +The forbidden zone is situated to the rigth side of a certain x co-ordinate. This x co-ordinate is defined by the \textsl{ForbiddenZoneFactor}. Xlocal;forbidden zone WF =(Xlocal;DikeTopAtPolder) + ForbiddenZoneFactor*(Xlocal;DikeToeAtPolder - Xlocal;DikeTopAtPolder) +A forbidden zone is used when \textsl{ZoneType} = ForbiddenZone. \begin{table*}[h] \centering Index: DamEngine/trunk/doc/Dam Engine - Functional Design/DAM Engine - Functional Design.pdf =================================================================== diff -u -r1047 -r1085 Binary files differ