Index: DamEngine/trunk/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex =================================================================== diff -u -r1557 -r2220 --- DamEngine/trunk/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex (.../FODAMPipingKernel.tex) (revision 1557) +++ DamEngine/trunk/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex (.../FODAMPipingKernel.tex) (revision 2220) @@ -7,9 +7,22 @@ \begin{enumerate} \item Sellmeijer 4 krachten model \item Sellmeijer (VNK) + \item Sellmeijer revised(WBI) \item Bligh \end{enumerate} + +\section{Rekenregel van Bligh} +\label{sec:RekenregelVanBligh} +Hier wordt gebruik gemaakt van de standaard piping regel van Bligh met een creep factor van 18: + +\begin{figure}[H] + \centering + \includegraphics[width=0.2\textwidth]{pictures/piping7.png} + \label{fig:piping7} +\end{figure} + + \section{Sellmeijer 4 krachten model} \label{sec:Sellmeijer4KrachtenModel} @@ -57,12 +70,82 @@ \label{fig:piping6} \end{figure} -\section{Rekenregel van Bligh} -\label{sec:RekenregelVanBligh} -Hier wordt gebruik gemaakt van de standaard piping regel van Bligh met een creep factor van 18: +\section{Sellmeijer revised (WBI)}\label{sec:SellmeijerRevised} -\begin{figure}[H] +Sellmeijer revised (WBI) consists of three sub failure mechanisms: uplift, heave and backward erosion. + +\subsection{Uplift (uplift safety)}\label{sec:Uplift} +For the uplift calculation DAM uses the DAM uplift calculation described in \autoref{sec:UpliftCalculation} + +\subsection{Heave}\label{sec:Heave} +This function of the kernel is decribed in paragraph 3.4 in \citep{PipingKernel_FunctionalDesign}. + +In DAM is assumed that heave always occurs, until the connection to the WBI piping kernel is extended to the complete version (also adeptions in DAM UI) + +Input of the kernel consists of: + +\begin{table}[H] \centering - \includegraphics[width=0.2\textwidth]{pictures/piping7.png} - \label{fig:piping7} -\end{figure} \ No newline at end of file + \begin{tabular}{|p{20mm}|p{20mm}|p{50mm}|p{50mm}|} \hline +\textbf{Symbol} & \textbf{Unit} & \textbf{Description} &\textbf{Value in DAM } \\ \hline +i & - & gradient at exit point & calculated based on the damping factor, see \autoref{sec:PipingWaterpressures} \\ \hline +i$_{c,h}$ & - & critical exit gradient & calculated based on the damping factor\\ \hline +D$_{cover}$ & m & total thickness of the cover sublayer & calulated, see \autoref{sec:DeterminationSoilParameters} \\ \hline +h$_{exit}$ & m NAP & piezometric head at the exit point & output kernel \\ \hline +$\Phi _{polder}$ & m & piezometric head in the hinterland (above reference level NAP) & {\textcolor[rgb]{0.65,0.16,0}{HeadPl2}}\\ \hline + \end{tabular} + \caption{Input paramaters Heave} + \label{tab:InputParametersHeave} +\end{table} + +Output of the kernel for the heave calculation is: +\begin{itemize} + \item Z$_h$ (limit state function value) + \item FoS$_{h}$ (factor of safety) + \item h$_{c,h}$(critical water level for heave) + \item h$_{exit}$(piezometric head at the exit point) + \item i (gradient at exit point) +\end{itemize} + +\subsection{Internal erosion (backward erosion)}\label{sec:InternalErosion} + +This function of the kernel is decribed in paragraph 3.5 in \citep{PipingKernel_FunctionalDesign}. + +Input of the kernel consists of: + +\begin{table}[H] + \centering + \begin{tabular}{|p{20mm}|p{20mm}|p{50mm}|p{50mm}|} \hline +\textbf{Symbol}& \textbf{Unit} & \textbf{Description} & \textbf{Value in DAM} \\ \hline +h & m & river water level (above reference level NAP) &\textcolor[rgb]{0.65,0.16,0}{BoezemLevelTp} or WaterHeight (when using scenarios) \\ \hline +h$_{exit}$ & m & phreatic level at the exit point (above reference level NAP) & calculated, see \autoref{sec:PhreaPlane} \\ \hline +m$_{p}$ & - & model factor piping & 1.0 \\ \hline +$\gamma_{water}$ & kN/m$^{3}$ & volumetric weight of water & 9.81 \\ \hline +r$_{c}$ & - & reduction factor providing the fraction of the blanket thickness by which the total head difference is reduced due to hydraulic resistance in the vertical exit channels & 0.3 \\ \hline +D$_{cover}$ & m & total thickness of the cover layer at the exit point & calculated, see \autoref{sec:DeterminationSoilParameters} \\ \hline +$\gamma_{sub,particals}$ & kN/m$^{3}$ & submerged volumetric weight of sand particles & 16.5 \\ \hline +$\theta_{Sellmeijer,rev.}$ & deg & bedding angle for Sellmeijer original & 37 \\ \hline +$\eta$ & - & White’s drag coefficient & 0.25 \\ \hline +d$_{70}$ & m & 70\%-fractile of the aquifer’s grain size distribution & from soilmaterials.mdb \\ \hline +d$_{70m}$ & m & d70-reference value in Sellmeijer, revised & 2.08E-4 \\ \hline +$\kappa$ & m$^{2}$ & intrinsic permeability & calculated with k, $\nu_{water}$ and g \\ \hline +k & m/s & hydraulic conductivity (Darcy) & from soilmaterials.mdb \\ \hline +$\nu_{water}$ & m$^{2}$ /s & kinematic viscosity of water at 10 degrees Celsius & 1.33 E-6 \\ \hline +g & m/s$^{2}$ & gravitational constant & 9.81 \\ \hline +D & m & thickness of the aquifer & calculated, see \autoref{sec:DeterminationSoilParameters} \\ \hline +L & m & seepage length & calculated, see \autoref{sec:DeterminationSoilParameters} \\ \hline + \end{tabular} + \caption{Input paramaters Internal erosion} + \label{tab:InputParametersInternalErosion} +\end{table} + +Output of the kernel for the internal erosion calculation is: + +\begin{itemize} + \item Z$_p$ (limit state function value) + \item FoS$_{p}$ (factor of safety) + \item h$_{c,p}$(critical water level for uplift) + \item $\Delta$ H$_{c}$ (critical head difference) + \item h - $_{exit}$- r$_{c}$D$_{cover}$(reduced head drop this the head drop which is reduced by the head drop over the exit channel) +\end{itemize} +